
Chapter 4
Bandwidth-Efficient Modulations with

More Envelope Fluctuation

Thus far in our discussions, we have focused on constant or quasi-constant
envelope modulations many of which, by virtue of their inherent memory, re-
quired a trellis decoder (as implemented by the VA [1]) for optimum reception.
In theory, the VA can start producing a ML estimate of the transmitted signal
only after observing the channel output corresponding to the entire transmitted
signal, resulting in an infinite decoding delay. By decoding delay, we mean the
amount of time (typically measured in number of bits) after which one begins
to decode. Algorithms such as the truncated VA [2] can be used to reduce the
decoding delay, but, in general, these lead to suboptimum receiver structures.

In certain applications, achieving a finite and small decoding delay is desir-
able. The natural question to ask is whether the requirement for finite decoding
delay imposes constraints on the modulation/demodulation scheme that would
reduce its optimality from a power and bandwidth-efficiency standpoint. Fur-
thermore, to what extent would these constraints compromise the constant en-
velope nature of the transmitted signal set?

The ultimate goal would be to understand the possible trade-offs among min-
imum Euclidean distance (or, more generally, distance profile), bandwidth (or,
more generally, PSD) and decoding delay. Such a goal is beyond the scope of this
monograph. Instead, we consider here a reduced goal that investigates the above
trade-offs for a particular structure derived from a generalization of that which
implements MSK. The seeds for this investigation were planted in a paper pre-
sented at the 1997 International Symposium on Information Theory [3], in which
Li and Rimoldi proposed a particular transmitter structure [the combination of
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an encoder of memory, ν, and a waveform mapper—see Fig. 4-1(a)]1 for TCMs
that, under certain constraints placed on the differences of the transmitted wave-
forms, guaranteed optimum decoding (using a conventional trellis decoder) with
a finite (ν-bit duration) delay. Specifically, the encoder was simply a tapped delay
line whose ν taps together with the input bit were mapped into a set ofM = 2ν+1

waveforms (signals) of one-bit duration in accordance with a BCD relationship.
That is, if Un ∈ 0, 1 denotes the nth input bit and Un−1, Un−2, · · · , Un−ν the
previous ν bits (the state of the encoder), then the signal transmitted in the
interval nTb ≤ t ≤ (n+ 1)Tb would be si (t), where the index, i, is defined in
terms of these bits by i = Un×2ν+Un−1×2ν−1 + · · ·+Un−ν−1×21 +Un−ν×20.
It was also shown in Ref. 3 that, in addition to the constraints placed on the
waveform differences, it was possible to further constrain the signals so as to
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 Fig. 4-1:  (a) A trellis-coded modulation complex baseband transmitter and
(b) the special case of "MSK" (ν = 1).

1 Note the synergy of this structure with the TCM representation of FQPSK illustrated in
Fig. 3-12.
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maximize the value of the minimum squared Euclidean distance taken over all
pairs of error event paths, namely, d2min = 2. Such a maximum value of d2min,
which corresponds to a number of binary modulations such as BPSK and MSK,
indicates that the receiver is providing optimum reception from a power conser-
vation standpoint. Finally, in the presence of all of the above constraints, Li and
Rimoldi [3] showed that it is possible to further optimize the system by selecting
a set of waveforms that minimize the bandwidth-bit time product, BTb.

In this chapter, we investigate an alternative (simpler) representation of the
transmitter configuration suggested in Ref. 3 that consists of nothing more than
a single filter (with complex impulse response) whose input is the ±1 equivalent
of the input data bits, namely, Ūn = 1 − 2Un for all n. This representation
is arrived at by viewing the transmitted signal as a random pulse train with a
pulse shape that extends beyond a single bit interval, i.e., one that contributes
intersymbol interference (ISI) to its neighbors. As we shall see, such a pulse
shape of duration (ν + 1)Tb can be constructed by designing its ν + 1 partitions
of duration Tb s in terms of the waveform differences that are outputted from
Li and Rimoldi’s transmitter. Such an ISI-based transmitter representation has
the advantage that the PSD, and hence, the bandwidth are readily evaluated
using known results for uncoded, random binary complex pulse trains. It also
allows applying the insight provided in Forney’s classic paper [4] on the VA, in
particular, the discussion regarding the use of this algorithm to combat ISI.

One of the requirements placed on the set of possible transmitted waveforms
si (t) , i = 0, 1, · · · ,M in Ref. 3 is that they all have equal energy.2 Following
consideration of the alternative representation described above, we discuss the
impact of relaxing the equal energy restriction on the power efficiency of the
modulation scheme in its ability to achieve the largest value of d2min. In partic-
ular, we propose an additional set of constraints (now on the differences of the
energies of the signals) that must be satisfied to achieve the same finite decoding
delay, using again the optimum sequence receiver, and then demonstrate that
such a set of constraints results in a signal design with a maximum value of d2min

less than two. Allowing the signals to have unequal energy, however, suggests
the possibility of additional flexibility in the design of these signals in order to
achieve the best bandwidth efficiency. Thus, the reduction in d2min caused by
the unequal energy requirement can possibly trade off against an additional re-
duction in signal bandwidth. Additional consideration of this notion warrants
investigation.

2 Note that the assumption of equal energy does not imply constant envelope, as was the case
for the CPMs studied in Ref. 5, which served as the motivation for the work leading up to
the results in Ref. 3. Nevertheless, the envelope fluctuation of the resulting signal designs
will be small when compared with Nyquist designs of comparable bandwidth efficiencies, to
be discussed later on.
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4.1 Bandwidth-Efficient TCM with Prescribed Decoding
Delay—Equal Signal Energies

4.1.1 ISI-Based Transmitter Implementation

The decomposition of a memory modulation into a cascade of an encoder and
a memoryless modulator was first applied to CPM by Rimoldi [5]. In particu-
lar, for MSK (see Sec. 2.8.1.5b of this monograph), the transmitter obtained is
illustrated in Fig. 2-18. Comparing Fig. 2-18 with the special case of Fig. 4-1(a),
corresponding to ν = 1 and illustrated in Fig. 4-1(b), we note that in the former,
the state is represented by the differentially encoded version of the current input
bit Vn = Un⊕Vn−1 whereas, in the latter, it would be just the previous input bit,
Un−1 itself. Furthermore, because of the differential encoding associated with
the state in Fig. 2-18, a differential decoder would be required in the receiver
following the trellis decoder, which would result in a small loss in BEP perfor-
mance. We have previously shown in Sec. 2.8.1.3 that precoding true MSK with
a differential decoder at the transmitter results in a modulation that is equiva-
lent (spectral and power efficiently) to MSK but without the need for differential
decoding at the receiver. It is such precoded MSK that is implemented by the
simpler configuration of Fig. 4-1(b) and denoted by the quotation marks around
MSK in the caption. In what follows, when referring to MSK in the context of
Fig. 4-1(b) or its equivalents, we shall assume that precoded MSK is implied.

Consider an uncoded random binary (±1) sequence,
{
Ūn

}
, that generates a

random pulse train

s′ (t) =
∞∑

n=−∞
Ūnp (t− nTb) (4.1 1)

where p (t) �= pR (t) + jpI (t) is a complex pulse shape defined on the interval
0 ≤ t ≤ (ν + 1)Tb. Consider partitioning p (t) into ν + 1 adjoint pieces cor-
responding to its one-bit interval sections. That is, we define the set of Tb-s
duration waveforms

pk (t) �= pRk (t) + jpIk (t) =
{
p (t+ kT ) , 0 ≤ t ≤ Tb
0, otherwise

, k = 0, 1, 2, · · · , ν

(4.1 2)

From (4.1-1), in any Tb-s interval, e.g., the nth, the signal s′ (t) will be de-
scribed by one ofM = 2ν+1 complex waveforms, i.e., s′k (t− nTb) , k = 0, 1, 2, · · · ,
2ν+1 − 1, which are expressed in terms of p (t) and the data sequence,

{
Ūn

}
, by
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s′k (t− nTb) = Ūnp0 (t− nTb) + Ūn−1p1 (t− nTb) + · · ·+ Ūn−νpν (t− nTb) ,

k = 0, 1, 2, · · · , 2ν+1 − 1 (4.1 3)

where the index, k, is the equivalent (0,1) bit sequence {Un, Un−1, · · · , Un−ν}
expressed in BCD form. As an example, the set of waveforms for memory ν = 2
is given below:

s′0 (t− nTb) = p0 (t− nTb) + p1 (t− nTb) + p2 (t− nTb)

s′1 (t− nTb) = p0 (t− nTb) + p1 (t− nTb)− p2 (t− nTb)

s′2 (t− nTb) = p0 (t− nTb)− p1 (t− nTb) + p2 (t− nTb)

s′3 (t− nTb) = p0 (t− nTb)− p1 (t− nTb)− p2 (t− nTb)

s′4 (t− nTb) = − p0 (t− nTb) + p1 (t− nTb) + p2 (t− nTb)

s′5 (t− nTb) = − p0 (t− nTb) + p1 (t− nTb)− p2 (t− nTb)

s′6 (t− nTb) = − p0 (t− nTb)− p1 (t− nTb) + p2 (t− nTb)

s′7 (t− nTb) = − p0 (t− nTb)− p1 (t− nTb)− p2 (t− nTb)




(4.1 4)

We note from (4.1-4) that, because of the BCD construction, the following
properties hold for the signal differences:

s′0 (t)− s′1 (t) = s′2 (t)− s′3 (t) = s′4 (t)− s′5 (t) = s′6 (t)− s′7 (t) = 2p2 (t) (4.1 5a)

s′0 (t)− s′2 (t) = s′4 (t)− s′6 (t) = 2p1 (t) (4.1 5b)

Also, an equivalent (at least insofar as the first equality is concerned) condition
to (4.1-5b) is

s′0 (t)− s′4 (t) = s′2 (t)− s′6 (t) = 2p0 (t) (4.1 5c)
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In the more generic case for arbitrary ν, the conditions corresponding to
(4.1-5a) and (4.1-5b) would be summarized as:

s′0 (t)− s′2m(t) =s′2m+1l (t)− s′2m+1l+2m (t) = 2pν−m (t) ,

m = 0, 1, 2, · · · , ν − 1, l = 1, 2, · · · , 2ν−m − 1 (4.1 6)

and, furthermore, the generalization of (4.1-5c) becomes

s′0 (t)− s′2ν (t) = s′2ν−1 (t)− s′2ν+2ν−1 (t) = 2p0 (t) (4.1 7)

Associating the 2ν+1 signals {s′k (t)} expressed as in (4.1-3) with the assumed
equal energy, {sk (t)}, derived from the implementation in Fig. 4-1(a), we see
that the conditions on the signal differences of s′i (t) given in (4.1-6) are precisely
those of Theorem I in Ref. 3, which guarantees a finite decoding delay of ν
bits using an optimum trellis-coded receiver.3 Therefore, since p (t) is entirely
specified by its adjoint Tb-s sections, Tb, it would appear that the transmitter
of Fig. 4-1(a) can be equivalently implemented [see Fig. 4-2(a)] by passing the
input ±1 data sequence,

{
Ūn

}
(modeled as a random impulse train), through a

filter with complex impulse response

p (t) =
ν∑
i=0

pi (t− iTb)

pi (t) =
1
2

[s′0 (t)− s′2ν−i (t)]




(4.1 8)

or equivalently [see Fig. 4-2(b)], the real and imaginary parts of the base-
band signal (to be modulated onto quadrature carriers for transmission over the

3 Li and Rimoldi also note that these conditions guarantee that the Euclidean distance between
any pair of paths in the trellis decoder diverging at time n and remerging at time n+ ν + 1
is the same. Furthermore, the number of correlators (matched filters) needed to implement
the optimum (MLSE) receiver will now vary linearly with memory, i.e., ν + 1, as opposed to
exponentially with memory, i.e., 2ν+1, which is the case when no constraints are imposed on
the decoding delay.
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Fig. 4-2:  (a)  Complex baseband transmitter for MSK 

equivalent to Fig. 4-1(b) and (b) an I-Q baseband 

transmitter for MSK equivalent to Fig. 4-1(b).

channel) can be obtained by passing the common input ±1 data sequence,
{
Ūn

}
,

through a pair of filters with respective impulse responses

pRi (t) =
1
2

[s′R0 (t)− s′R2ν−i (t)]

pIi (t) =
1
2

[s′I0 (t)− s′I2ν−i (t)]




(4.1 9)

Unfortunately, the implementation in Fig. 4-2(a) is not always equivalent to that
in Fig. 4-1(a), but as we shall see momentarily, for the case of most practical
interest, i.e., a signal set {sk (t)} with maximum minimum Euclidean distance
between its members, the equivalence between the two implementations is guar-
anteed, i.e., {s′k (t)} and {sk (t)} are identical. Before showing this, we note that
even though pR (t) and pI (t) are constructed from the real and imaginary compo-
nents of a set of equal energy complex signals,

{
s′k (t) , k = 0, 1, 2, · · · , 2ν+1 − 1

}
,

they themselves do not necessarily have equal energy. We shall see that this is
true, even for the simple case of MSK.

Note that because of the symmetry of the BCD mapping, the signals in the
memory two example of (4.1-4) also satisfy the conditions
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s′0 (t) = − s′7 (t)

s′1 (t) = − s′6 (t)

s′2 (t) = − s′5 (t)

s′3 (t) = − s′4 (t)




(4.1 10)

which, in the case of arbitrary memory, ν, would become

s′m (t) = −s′2ν+1−1−m (t) , m = 0, 1, · · · , 2ν − 1 (4.1 11)

The conditions of (4.1-11), which correspond to an antipodal signaling set, are
precisely those given in Ref. 3. They achieve the maximum value of minimum-
squared Euclidean distance, namely, d2min = 2. Thus, the implementation of
Fig. 4-2(a) not only achieves finite decoding delay but also automatically achieves
the optimum performance from the standpoint of power efficiency. This result
should not be surprising in view of the findings in Ref. 4, which indicate that
an MLSE-form of receiver such as the trellis decoder can completely remove
ISI and thereby achieve the performance of a zero-ISI (full-response) system.
However, since the implementation in Fig. 4-1(a) can produce a set of signals,
{sk (t)}, that satisfies the difference properties needed for finite decoding delay
without requiring them to have maximum minimum Euclidean distance, then
the two implementations will be equivalent, i.e., {sk (t)} = {s′k (t)} only when
this additional requirement is imposed. A formal proof of this equivalence is
presented in Ref. 3. In what follows, we consider only the important practical
case of antipodal signal sets and, as such, drop the prime notation on the signals
derived from p (t).

What remains is to consider the bandwidth efficiency of signals designed
according to the constraints of (4.1-6), (4.1-7), and (4.1-11). This is where the
ISI-based representation of Fig. 4-2(a) helps considerably, since the evaluation of
the PSD of the transmitted signal can be trivially accomplished using well-known
relations [6] for random pulse trains. This is considered in the next section.
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4.1.2 Evaluation of the Power Spectral Density

In this section, we compute the PSD of a random complex pulse train, e.g.,
that in (4.1-1), modulated onto quadrature carriers. That is, if the transmitted
bandpass signal is given by4

s̃ (t) = Re
{
s (t) ej2πfmt

}

=

( ∞∑
n=−∞

ŪnpR (t− nTb)
)

cos 2πfmt

−
( ∞∑
n=−∞

ŪnpI (t− nTb)
)

sin 2πfmt (4.1 12)

then it is straightforward to show using an extension of the methods in Chap. 2
of Ref. 6 that the PSD of s̃ (t) is given by

S (f) =
1

4Tb
|PR (f − fm) + jPI (f − fm)|2

+
1

4Tb
|PR (f + fm)− jPI (f + fm)|2

= Su (f) + Sl (f) (4.1 13)

where

PR (f) �= F {pR (t)}

PR (f) �= F {pI (t)}


 (4.1 14)

are the Fourier transforms of the real and imaginary pulse shapes which, in
general, are complex functions of f , and the u and l subscripts denote upper
and lower sideband, respectively. Note that the signal in (4.1-12) differs from
the usual QPSK-type of signal in that here, the same data sequence is passed

4 We use the notation fm for the actual modulating frequency of the quadrature carriers to
distinguish it from the carrier frequency around which the PSD is symmetric, which will be
denoted by fc. More about this shortly.
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through both the I and Q filters whereas for QPSK, the two sequences passing
through these filters would be different and independent of one another. As such,
the PSD in (4.1-13) cannot, in general, be written in the form [6, Eq. (2.131)]

S (f) =
1
4
G (f − fc) +

1
4
G (f + fc) (4.1 15)

where G (f) is the equivalent baseband (symmetrical around f = 0) PSD and is
a real function of f , and fc is some arbitrary carrier frequency.5

To demonstrate the above point, consider the specific case of MSK (ν = 1),
for which the four complex signals are given by6

s0 (t) = 0 + j1

s1 (t) = sin
πt

Tb
− j cos

πt

Tb
= s∗0 (t) ej

πt
Tb

s2 (t) = − s1 (t)

s3 (t) = − s0 (t)




(4.1 16)

In terms of the ISI-based representation, we obtain from (4.1-8) that

p0 (t) =
1
2

sin
πt

Tb
+ j

1
2

[
1− cos

πt

Tb

]

p1 (t) = − 1
2

sin
πt

Tb
+ j

1
2

[
1 + cos

πt

Tb

]




(4.1 17)

5 What is meant by an “equivalent baseband PSD” is a PSD around zero frequency that
is identical to the upper or lower sideband of the bandpass PSD, frequency-shifted to the
origin. While it is always possible to express (4.1-13) in the form S (f) = (1/4)Gu (f − fc)
+ (1/4)Gl (f + fc) where Gu (f) = Gl (−f), in general, there is no guarantee that Gu (f) [or
equivalently, Gl (f)] has symmetry about the origin, or for that matter, about any frequency
fc. Stated another way, while demodulating the bandpass signal with a carrier at some
frequency fc (not necessarily equal to the modulating frequency fm) will always produce
a symmetric PSD around the origin, the resulting baseband PSD will, in general, be a
combination (sum) of the aliased upper and lower sidebands, and may or may not appear as
a simple frequency translation of either of these sidebands.

6 Note that for the Rimoldi decomposition of MSK illustrated in Fig. 2-18, the signals satisfy
the condition s0 (t)− s1 (t) = − (s2 (t)− s3 (t)) rather than s0 (t)− s1 (t) = s2 (t)− s3 (t), as
required by (4.1-5a), for the signals of (4.1-16) corresponding to precoded MSK.
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Thus, using (4.1-17) to define the complex pulse shape of (4.1-8), we obtain

p (t) =
1
2

sin
πt

Tb
+ j

1
2

[
1− cos

πt

Tb

]
, 0 ≤ t ≤ 2Tb (4.1 18)

That is, an appropriate implementation for MSK that guarantees a decoding de-
lay of one bit is that of Fig. 4-2(b), with I and Q filters having impulse responses

pR (t) =
1
2

sin
πt

Tb
, 0 ≤ t ≤ 2Tb

pI (t) =
1
2

[
1− cos

πt

Tb

]
, 0 ≤ t ≤ 2Tb




(4.1 19)

Taking the Fourier transforms of pR (t) and pI (t) of (4.1-8) and using these in
(4.1-13), we arrive at the following result for the bandpass PSD:

S (f) =
Tb
4

sin2 2π (f − fm)Tb
π2

[
1

1− 2 (f − fm)Tb
+

1
2 (f − fm)Tb

]2

+
Tb
4

sin2 2π (f + fm)Tb
π2

[
1

1 + 2 (f + fm)Tb
− 1

2 (f + fm)Tb

]2

= Su (f) + Sl (f) (4.1 20)

Note that while S (f) is an even function of f (as it should be for a real signal),
its upper and lower sidebands, Su (f) and Sl (f), are not symmetric around fm
and −fm, respectively. However, there does exist a frequency, fc �= fm, around
which the upper sideband (and similarly for the lower sideband) is symmetric.
To understand why this is so, we remind the reader that according to Rimoldi’s
decomposition [5], the modulation frequency chosen for the quadrature carriers
should be shifted from the carrier frequency fc, around which the bandpass
spectrum is to be symmetric by an amount equal to 1/4Tb, i.e., fm = fc−1/4Tb.
This stems from the fact that the specification of the signals as in (4.1-16) results
in a tilted trellis where the phase tilt is equal to π/2 rad. (Note that a frequency
shift of ∆f = 1/4Tb is equal to a phase shift 2π∆fT = π/2). To demonstrate
that this is indeed the case, we evaluate the PSD of MSK, using (4.1-20) with
the shifted value of modulating frequency, fm = fc − 1/4Tb. When this is done,
the result in (4.1-15) is obtained with
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G (f) =
16Tb
π2

cos2 2πfTb
(1− 16f2T 2

b )2
(4.1 21)

which corresponds (except for a normalization factor) to the well-known PSD of
MSK [6, Eq. (2.148)].

The question that comes about now is: For arbitrary memory, ν, and a
baseband signal design satisfying (4.1-6), (4.1-7), and (4.1-11), is it possible
to find a modulating frequency, fm, that will produce a symmetric bandpass
PSD around some other carrier frequency, fc? If not, then one cannot find an
equivalent baseband PSD, and, hence, the bandwidth (whatever measure is used)
of the signal must be determined from the RF waveform.

4.1.2.1 The Memory One Case. To shed some light on the answer to the
above question, we consider the simplest case of unit memory, where the complex
pulse shape of (4.1-8) is given by

p (t) =
1
2

[s0 (t)− s2 (t) + s0 (t− Tb)− s1 (t− Tb)]

=
1
2

[s0 (t) + s0 (t− Tb) + s1 (t) + s2 (t− Tb)] , 0 ≤ t ≤ 2Tb (4.1 22)

where, in accordance with (4.1-11), we have used the fact that s1 (t) = −s2 (t)
in order to achieve d2min = 2. The Fourier transform of p (t) in (4.1-22) is given
by

P (f) =
1
2

[∫ Tb

0

s0 (t)
(
1 + e−j2πfTb

)
e−j2πftdt

+
∫ Tb

0

s1 (t) e−j2πftdt+ e−j2πfTb
∫ Tb

0

s2 (t) e−j2πftdt

]
(4.1 23)

Since from (4.1-13), the upper spectral sideband is Su(f) = (1/4Tb) |P (f−fm)|2,
then in order for this to be symmetric around fc, we must have

|P (fc + f − fm)|2 = |P (fc − f − fm)|2 (4.1 24)

or letting fs
�= fc − fm denote the separation between the actual modulation

frequency and the bandpass frequency around which symmetry is desired, s0 (t)
and s1 (t) must be chosen to satisfy
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|P (fs + f)|2 = |P (fs − f)|2 (4.1 25a)

or equivalently

|P (fs + f)|2 = |P ∗ (fs − f)|2 (4.1 25b)

for some fs. In terms of (4.1-23), the spectral equality in (4.1-25b) requires that
we have

∣∣∣∣∣
∫ Tb

0

(
s0 (t) e−j2πfst

)
e−j2πftdt+ e−j2π(fs+f)Tb

∫ Tb

0

(
s0 (t) e−j2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s1 (t) e−j2πfst

)
e−j2πftdt+ e−j2π(fs+f)Tb

∫ Tb

0

(
s2 (t) e−j2πfst

)
e−j2πftdt

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ Tb

0

(
s∗0 (t) ej2πfst

)
e−j2πftdt+ ej2π(fs−f)Tb

∫ Tb

0

(
s∗0 (t) ej2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s∗1 (t) ej2πfst

)
e−j2πftdt+ ej2π(fs−f)Tb

∫ Tb

0

(
s∗2 (t) ej2πfst

)
e−j2πftdt

∣∣∣∣∣
2

(4.1 26)

Sufficient conditions on the signals, {si (t)}, for (4.1-26) to be satisfied are

s1 (t) = s∗0 (t) ej4πfst

s2 (t) = ej4πfsTbs∗0 (t) ej4πfst


 (4.1 27)

However, since in arriving at (4.1-26), we have already assumed that s1 (t) =
−s2 (t), then (4.1-27) further requires that fs = 1/4Tb, from which we obtain
the complete signal set
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s1 (t) = s∗0 (t) ejπt/Tb

s2 (t) = − s∗0 (t) ejπt/Tb

s3 (t) = − s0 (t)




(4.1 28)

Note that for memory one it is only necessary to specify s0 (t) in order to arrive
at the complete signal set. Also, the signal set of (4.1-28) satisfies the finite
decoding delay condition of Ref. 3, namely, s0 (t)− s1 (t) = s2 (t)− s3 (t).

The equivalent lowpass PSD is obtained by first using s1 (t) = −s2 (t) in
(4.1-23), resulting in

P (f) =
1
2

[
S0 (f) + S1 (f) + e−j2πfTb

(
S0 (f)− S1 (f)

)]
(4.1 29)

from which one immediately gets

1
Tb
|P (f)|2 =

1
2Tb

[
|S0 (f)|2 + |S1 (f)|2 + Re

{(
S∗0 (f) + S∗1 (f)

)(
S0 (f)− S1 (f)

)
e−j2πfTb

}]

(4.1 30)

In (4.1-29) and (4.1-30), Si (f) denotes the Fourier transform of si (t). Using
the first symmetry condition of (4.1-28) in (4.1-30) gives the desired equivalent
lowpass PSD, namely,

1
Tb

∣∣∣∣P
(
f +

1
4Tb

)∣∣∣∣
2

=
∣∣∣∣S0

(
f +

1
4Tb

)∣∣∣∣
2

[1− sin 2πfTb]

+
∣∣∣∣S0

(
−f +

1
4Tb

)∣∣∣∣
2

[1 + sin 2πfTb]

+ 2
[
Re

{
S0

(
f +

1
4Tb

)}
Im

{
S0

(
−f +

1
4Tb

)}

+ Re
{
S0

(
−f +

1
4Tb

)}
Im

{
S0

(
f +

1
4Tb

)}]
cos 2πfTb

(4.1 31)
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which is clearly an even function of frequency.
Although (4.1-28) is satisfied by the MSK signals of (4.1-16) as should be the

case, this condition applies in a more general context since it does not explicitly
specify s0 (t) but rather only the relation between s0 (t) and s1 (t). This should
not be surprising since it has been shown in the past that there exists an entire
class of MSK-type signals (referred to in Ref. 7 as generalized MSK) which hap-
pen to also be constant envelope (in addition to being equal energy) and achieve
d2min = 2 as well as a decoding delay of one bit interval. In particular, the class
of binary full-response CPM signals with modulation index h = 1/2 and equiv-
alent phase pulse q (t), which satisfies the conditions of (2.8-5), is appropriate,
an example of which is Amoroso’s SFSK [8] for which q (t) is given by (2.8-9).

4.1.2.2 The Memory Two Case. For memory two, the pulse shape is given
by

p (t) =
1
2
[
s0 (t)− s4 (t) + s0 (t− Tb)− s2 (t− Tb) + s0 (t− 2Tb)− s1 (t− 2Tb)

]

=
1
2
[
s0 (t) + s0 (t− Tb) + s0 (t− 2Tb) + s3 (t)− s2 (t− Tb)− s1 (t− 2Tb)

]
,

0 ≤ t ≤ 3Tb (4.1 32)

with Fourier transform

P (f) =
1
2

[(
1 + e−j2πfTb + e−j4πfTb

) ∫ Tb

0

s0 (t) e−j2πftdt+
∫ Tb

0

s3 (t) e−j2πftdt

−e−j2πfTb
∫ Tb

0

s2 (t) e−j2πftdt− e−j4πfTb
∫ Tb

0

s1 (t) e−j2πftdt

]
(4.1 33)

Applying (4.1-33) to (4.1-25b) and letting s3 (t) = s2 (t) − s0 (t) + s1 (t), in
accordance with (4.1-5a), we obtain the bandpass spectral symmetry condition
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∣∣∣∣∣e−j2π(fs+f)Tb

∫ Tb

0

(
s0 (t) e−j2πfst

)
e−j2πftdt + e−j4π(fs+f)Tb

×
∫ Tb

0

(
s0 (t) e−j2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s2 (t) e−j2πfst

)
e−j2πftdt− e−j2π(fs+f)Tb

∫ Tb

0

(
s2 (t) e−j2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s1 (t) e−j2πfst

)
e−j2πftdt− e−j4π(fs+f)Tb

∫ Tb

0

(
s1 (t) e−j2πfst

)
e−j2πftdt

∣∣∣∣∣
2

=

∣∣∣∣∣ej2π(fs−f)Tb
∫ Tb

0

(
s∗0 (t) ej2πfst

)
e−j2πftdt + ej4π(fs−f)Tb

×
∫ Tb

0

(
s∗0 (t) ej2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s∗2 (t) ej2πfst

)
e−j2πftdt− ej2π(fs−f)Tb

∫ Tb

0

(
s∗2 (t) ej2πfst

)
e−j2πftdt

+
∫ Tb

0

(
s∗1 (t) ej2πfst

)
e−j2πftdt −ej4π(fs−f)Tb

∫ Tb

0

(
s∗1 (t) ej2πfst

)
e−j2πftdt

∣∣∣∣∣
2

(4.1 34)

Analogous with (4.1-27), satisfying (4.1-34) implies the set of conditions

s1 (t) + s2 (t) =
(
s∗1 (t) + s∗2 (t)

)
ej4πfst (4.1 35a)

s0 (t)− s2 (t) = ej4πfsTb
(
s∗0 (t)− s∗2 (t)

)
ej4πfst (4.1 35b)

s0 (t)− s1 (t) = ej8πfsTb
(
s∗0 (t)− s∗1 (t)

)
ej4πfst (4.1 35c)

Again letting fs = 1/4Tb and summing (4.1-35a), (4.1-35b), and (4.1-35c) gives
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s1 (t) + s2 (t) =
(
s∗1 (t) + s∗2 (t)

)
ejπt/Tb (4.1 36a)

s0 (t) = s∗2 (t) ejπt/Tb
(
or equivalently s2 (t) = s∗0 (t) ejπt/Tb

)
(4.1 36b)

s0 (t)− s1 (t) =
(
s∗0 (t)− s∗1 (t)

)
ejπt/Tb (4.1 36c)

Actually, (4.1-36c) is not an independent condition since it can be derived from
(4.1-36a) and (4.1-36b). Thus, (4.1-36a) and (4.1-36b) are sufficient to determine
the signal design.

Following along the lines of (4.1-29) and (4.1-30), the equivalent PSD of the
memory two modulation may be found. In particular, the Fourier transform of
the equivalent pulse shape in (4.1-8) is given as

P (f) =

1
2

[
S0 (f) + S3 (f) + e−j2πfTb

(
S0 (f)− S2 (f)

)
+ e−j4πfTb

(
S0 (f)− S1 (f)

)]
(4.1 37)

Using the additional relation, S3 (f) = S1 (f) + S2 (f)− S0 (f), to achieve finite
decoding delay, one immediately gets the desired equivalent lowpass PSD as

1
Tb

∣∣∣∣P
(
f +

1
4Tb

)∣∣∣∣
2

=

1
4Tb

[∣∣∣∣S1

(
f +

1
4Tb

)
+ S2

(
f +

1
4Tb

)∣∣∣∣
2

+
∣∣∣∣S0

(
f +

1
4Tb

)
− S2

(
f +

1
4Tb

)∣∣∣∣
2

+
∣∣∣∣S0

(
f +

1
4Tb

)
− S1

(
f +

1
4Tb

)∣∣∣∣
2

+ 2Re
{[
S∗1

(
f +

1
4Tb

)
+ S∗2

(
f +

1
4Tb

)]

×
[
S0

(
f +

1
4Tb

)
− S2

(
f +

1
4Tb

)]
e−j2π(f+[1/4Tb])Tb

}
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+ 2Re
{[
S∗0

(
f +

1
4Tb

)
− S∗2

(
f +

1
4Tb

)]

×
[
S0

(
f +

1
4Tb

)
− S1

(
f +

1
4Tb

)]
e−2π(f+[1/4Tb])Tb

}

+ 2Re
{[
S∗1

(
f +

1
4Tb

)
+ S∗2

(
f +

1
4Tb

)]

×
[
S0

(
f +

1
4Tb

)
− S1

(
f +

1
4Tb

)]
e−4π(f+[1/4Tb])Tb

}]
(4.1 38)

which, when (4.1-36) is used, can be shown to be an even function of frequency,
as is necessary.

4.1.3 Optimizing the Bandwidth Efficiency

Having obtained expressions for the equivalent baseband PSD, it is now
straightforward to use these to determine the sets of signals that satisfy all
of the previous constraints and, in addition, maximize the power within a given
bandwidth, B. In mathematical terms, we search for the set of signals that for
a given value of B maximizes the fractional in-band power

η =

∫ B/2
−B/2G (f) df∫∞
−∞G (f) df

, G (f) �=
1
Tb

∣∣∣∣P
(
f +

1
4Tb

)∣∣∣∣
2

(4.1 39)

subject to the unit power constraint

1
Tb

∫ Tb

0

|si (t)|2 dt =
1
Tb

∫ ∞
−∞
|Si (f)|2 dt = 1, i = 0, 1, 2, · · · ,M − 1 (4.1 40)

4.1.3.1 Memory One Case. For the case of ν = 1, we observed that the
entire signal set may be determined from the single complex signal, s0 (t). Thus,
optimizing bandwidth efficiency corresponds to substituting the PSD of (4.1-31)
(which is entirely specified in terms of the Fourier transform of s0 (t)) into (4.1-
39) and then maximizing η subject to (4.1-40). Such a procedure would result
in an optimum S0 (f) from whose inverse Fourier transform one could determine
the optimum signal set. Since S0 (f) exists, in general, over the entire doubly
infinite frequency axis, it is perhaps simpler to approach the optimization in the
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time domain, since s0 (t) is indeed time limited to the interval 0 ≤ t ≤ Tb. To
do this, we need to first rewrite the PSD of (4.1-40) in terms of s0 (t) rather
than S0 (f) and then perform the integrations on f required in (4.1-39). After
considerable manipulation, and for simplicity of notation normalizing Tb = 1
(i.e., BTb = B), it can be shown that

∫ B/2

−B/2
G (f) df =

B

∫ 1

0

∫ 1

0

s0 (t) s∗0 (τ) e−j(π/2)(t−τ)

×
[
sinc πB (t− τ)− j 1

2
sinc πB (t− τ + 1) + j

1
2
sinc πB (t− τ − 1)

]
dtdτ

+
1
2
B Im

{∫ 1

0

∫ 1

0

s0 (t) s0 (τ) e−j(π/2)(t+τ)

×
[
sinc πB (t− τ + 1) + sinc πB (t− τ − 1)

]
dtdτ

}
(4.1 41)

where sinc x �= sinx/x. Furthermore, it is straightforward to show that

∫ ∞
−∞

G (f) df = 1 (4.1 42)

and, thus, η is given directly by (4.1-41).
The maximization of (4.1-41) subject to the energy constraint of (4.1-40) has

been carried out numerically, using the MATLAB(r) (software application) op-
timization toolbox function “fminunc” (quasi-Newton method of convergence).
In particular, for each value of B (BTb if Tb �= 1), the optimum complex signal,
s0 (t), [represented by N uniformly spaced samples in the interval (0, 1)], is de-
termined, from which the fractional out-of-band power, 1−η, is calculated using
(4.1-41) for η. Because of complexity issues involved in computing the optimum
solution, the number of sample points, N , is limited to 64. Furthermore, since
the Gaussian integration required to evaluate with high accuracy the double in-
tegral of (4.1-41) requires a much higher density of sample values (not necessarily
uniformly spaced), then to allow for Fourier interpolation, we assume the signal



206 Chapter 4

to be bandlimited7 to the Nyquist rate, i.e., 32 (32/Tb if Tb �= 1). Because of
this bandlimiting assumption, certain optimum signal waveforms (particularly
those at small values of B) that exhibit a sharp discontinuity will have a ringing
behavior. This ringing behavior can be minimized by additional interpolation
(filtering) but has proven difficult to eliminate completely.

Figures 4-3(a) and 4-3(b) are 3-D plots of the optimum real and imagi-
nary parts of s0 (t) versus t as a function of B in the interval 0 ≤ B ≤ 3.
Figures 4-4(a)–(h) are a number of cuts of these 3-D plots taken at distinct val-
ues of B in the same range. For small values of B, we observe that the real part
of s0 (t) has sharp discontinuities at t = 0 and t = 1 and, thus, exhibits the ring-
ing behavior alluded to above. As B increases, the sharpness of the discontinuity
at the edges diminishes, and in the limit of large B, both the real and imaginary
parts of s0 (t) approach a sinusoid with unit period. Specifically, s0 (t) tends
toward the form −α1 sin 2πt+ j (β1 + α2 cos 2πt), where α1, α2, β1 are constants
that also must satisfy the unit energy constraint, i.e., β2

1 + (1/2)
(
α2

1 + α2
2

)
= 1.

Figure 4-5 is the corresponding plot of optimum (minimum) fractional out-of-
band power versus B. Also shown are corresponding results for MSK and SFSK
modulations that can readily be found in Fig. 2.11 of Ref. 6.8 We observe that
by optimizing the signal set at each value of B without loss in d2min or finite
decoding delay performance, we are able to obtain a significant improvement in
bandwidth efficiency. The quantitative amount of this improvement is given in
Table 4-1 for the 99 percent and 99.9 percent bandwidths corresponding respec-
tively to the −20 dB and −30 dB out-of-band power levels.

Before concluding this section, we note that the maximization of (4.1-41)
subject to the constraint in (4.1-40) can be carried out analytically using the
method of calculus of variations. Unfortunately, however, the resulting solu-
tion for s0 (t) is in the form of an integral equation that does not lend itself to a

Table 4-1. Bandwidth-efficient performance of
TCM with prescribed decoding delay.

1/B99Tb % Improvement 1/B99.9Tb % Improvement
Signal

([b/s]/Hz) over MSK ([b/s]/Hz) over MSK

MSK 0.845 — 0.366 —

Optimum (ν = 1) 0.896 6.04 0.659 79.7

Optimum (ν = 2) 1.23 45.6 — —

7 Of course, in reality the continuous time-limited signal would have infinite bandwidth.

8 Note that the definition of bandwidth B in Ref. 1 is one-half of that used in this monograph.
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Fig. 4-5.  Comparison of fractional out-of-band powers.

closed-form solution. Thus, there is no strong advantage to presenting these
results here since we have already obtained a numerical solution as discussed
above by direct maximization of (4.1-41). One interesting observation does result
from applying the calculus of variations approach: s0R (t) is an odd function
around its midpoint (at t = 1/2) and s0I (t) is an even function around its
same midpoint. Clearly, this observation is justified by the numerical results
illustrated in the various parts of Fig. 4-4.

4.1.3.2 Memory Two Case. Analogous to what was done for the memory
one case, we need to maximize the fractional in-band power of (4.1-39), using
now (4.1-31) for G (f). Expressing the various Fourier transforms of (4.1-31) in
terms of their associated signal waveforms and then performing the integration on
frequency between −B/2 and B/2 as required in (4.1-39) produces the following
result (again normalizing Tb = 1):

∫ B/2

−B/2
G (f) df =

6∑
i=1

Pi (4.1 43)

where
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P1 =
B

4

∫ 1

0

∫ 1

0

(
s
(2)
1 (t) + s(2)2 (t)

) (
s
(2)
1 (τ) + s(2)2 (τ)

)∗

× e−j(π/2)(t−τ)sinc πB(t− τ)dtdτ

P2 =
B

4

∫ 1

0

∫ 1

0

(
s
(2)
0 (t)− s(2)2 (t)

) (
s
(2)
0 (τ)− s(2)2 (τ)

)∗

× e−j(π/2)(t−τ)sinc πB(t− τ)dtdτ

P3 =
B

4

∫ 1

0

∫ 1

0

(
s
(2)
0 (t)− s(2)1 (t)

) (
s
(2)
0 (τ)− s(2)1 (τ)

)∗

× e−j(π/2)(t−τ)sinc πB(t− τ)dtdτ

P4 =2 Re
{
B

4

∫ 1

0

∫ 1

0

(
s
(2)
0 (t)− s(2)2 (t)

) (
s
(2)
1 (τ) + s(2)2 (τ)

)∗

×e−j(π/2)(t−τ+1)sinc πB(t− τ + 1)dtdτ
}

P5 =2 Re
{
B

4

∫ 1

0

∫ 1

0

(
s
(2)
0 (t)− s(2)1 (t)

) (
s
(2)
0 (τ)− s(2)2 (τ)

)∗

×e−j(π/2)(t−τ+1)sinc πB(t− τ + 1)dtdτ
}

P6 =2 Re
{
B

4

∫ 1

0

∫ 1

0

(
s
(2)
0 (t)− s(2)1 (t)

) (
s
(2)
1 (τ) + s(2)2 (τ)

)∗

×e−j(π/2)(t−τ+2)sinc πB(t− τ + 2)dtdτ
}




(4.1 44)

From the constraint in (4.1-36b), s(2)2 (t) can be expressed in terms of s(2)∗0 (t) and
then substituted in (4.1-44). Thus, the optimization problem reduces to finding
only two signals, s

(2)
0 (t) and s

(2)
1 (t), by joint maximization of

(4.1-43) combined with (4.1-44). (Note that s(2)3 (t) can be found from s
(2)
3 (t) =

s
(2)
2 (t)− s(2)0 (t) + s(2)1 (t), once s(2)0 (t) and s(2)1 (t) are determined.)
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Superimposed on Fig. 4-5 are the optimum fractional out-of-band power re-
sults for the memory two case. Due to the extremely time-consuming nature
of the computer algorithms that perform the joint optimization procedure, par-
ticularly at low levels of fractional out-of-band power where extreme accuracy
in satsifying the constraints is required, only results corresponding to values
of BTb < 1 (or equivalently B < 1 for Tb = 1) have been obtained thus far.
Nevertheless, we are able to extract from these results the bandwidth-efficiency
improvement relative to MSK for the 99 percent (−20 dB) out-of-band power
level, and this improvement is included in Table 4-1. We observe that there is a
significant improvement in out-of-band power performance, with no power effi-
ciency penalty, by going from a memory one (1-bit decoding delay) modulation
to one that has memory two (2-bit decoding delay).

4.2 Bandwidth-Efficient TCM with Prescribed Decoding
Delay—Unequal Signal Energies

In the introduction to this chapter, we said that a relaxation of the equal
energy condition on the signals could be used to potentially trade off between
the power and bandwidth efficiency of the system. We now investigate the addi-
tional constraints that must be placed on the signals in order that the optimum
TCM receiver still achieve a finite decoding delay equal to the memory of the
modulation. In order to accomplish this, we first briefly review the received sig-
nal plus noise model, branch metric, and accompanying decision rule leading up
to the conditions on the signal differences in Theorem I of Ref. 3 [summarized
herein in (4.1-6) and (4.1-7)] and then modify them so as to apply to the case of
unequal signal energies.

Corresponding to the baseband signal, s (t), of (4.1-1) transmitted over an
AWGN channel, the received signal is

R (t) = s (t) +N (t) (4.2 1)

where N (t) is again a zero-mean complex Gaussian noise process with PSD
N0 watts/hertz. For equal energy signals, the maximum-likelihood (Viterbi)
receiver uses as its branch metric in the nth interval

λn (si) = Re

{∫ (n+1)T

nT

R∗ (t) si (t− nT ) dt

}

= Re

{∫ T

0

R∗ (t+ nT ) si (t) dt

}
, i ∈

{
0, 1, · · · , 2ν+1 − 1

}
(4.2 2)
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As previously stated, without any constraints on the signal set, for true opti-
mality, the Viterbi receiver theoretically needs to observe the entire transmitted
sequence (sum over an infinite number of branch metrics), resulting in an infi-
nite decoding delay although in practice one may decode with finite delay using a
truncated (but suboptimal) form of VA. If the signal differences are constrained
as in (4.1-6) and (4.1-7), then, as previously stated in Theorem I of Ref. 3, the re-
ceiver can optimally decode the nth information symbol after ν symbol intervals,
according to the decision rule:

Choose Un = 0 if
n+ν∑
i=ν

λi (s0 − s2n+ν−i) > 0, otherwise choose Un = 1 (4.2 3)

For unequal energy signals, the branch metric of (4.2-2) would be modified
to

λn (si) = Re

{∫ (n+1)T

nT

R∗ (t) si (t− nT ) dt

}
− Ei

2

= Re

{∫ T

0

R∗ (t+ nT ) si (t) dt

}
− Ei

2
, i ∈

{
0, 1, · · · , 2ν+1 − 1

}
(4.2 4)

where Ei =
∫ T
0
|si (t)|2 dt is the energy of the ith signal in the set. Since the

derivation of the conditions for finite decoding delay given in Ref. 3 relies on
comparisons of sums of branch metrics, it is straightforward to substitute (4.2-4)
for (4.2-2) in the steps of this derivation, which leads to an additional set of
conditions on the energies of the signals. To illustrate the procedure, we first
consider the simplest case corresponding to unit memory (ν = 1).

Consider the two-state trellis (corresponding to the nth and n+1st intervals)
in Fig. 4-6, where each branch is labeled with: (a) the input bit that causes the
transition between states and (b) the baseband signal transmitted in accordance
with the choice defined in Fig. 4-1(b). Assume first that we are in state “0”
at time n (having gotten there as a result of decoding symbols in the previous
intervals). Suppose now that the two paths (of length two branches) that survive
at time n+2 are those that merge at (eminate from) the same node at time n+1
(thereby allowing unique decoding of the transmitted symbol, Un). Since this
node can correspond to either state “0” or state “1,” there exist two possibilities,
which are indicated by heavy lines in Figs. 4-5(a) and 4-5(b).

For Fig. 4-6(a), both surviving paths have a first branch corresponding to
Un = 1 and, thus, the decision Ûn = 1 is unique provided that
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n n + 1 n + 2

Fig. 4-6.  A trellis diagram for memory one modulation, assuming state "0" at 

time n: (a) surviving paths merging at state "1" at time n + 1 and (b) surviving 

paths merging at state "0" at time n + 1.
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1

0 0 0

1

λn (s2) + λn+1 (s3) > λn (s0) + λn+1 (s2) (4.2 5a)

and

λn (s2) + λn+1 (s1) > λn (s0) + λn+1 (s0) (4.2 5b)

or equivalently

λn (s0)− λn (s2) + λn+1 (s2)− λn+1 (s3) < 0 (4.2 6a)

and

λn (s0)− λn (s2) + λn+1 (s0)− λn+1 (s1) < 0 (4.2 6b)
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To simultaneously satisfy (4.2-6a) and (4.2-6b), we need to have

λn+1 (s2)− λn+1 (s3) = λn+1 (s0)− λn+1 (s1) (4.2 7)

which is the identical requirement found by Li and Rimoldi [3] when treating the
equal signal energy case. Using instead now the metric definition in (4.2-4) for
unequal energy signals, then analogous to the results in Ref. 3, the condition of
(4.2-7) can be satisfied by the first equality in (4.1-5a), namely,

s0 (t)− s1 (t) = s2 (t)− s3 (t) (4.2 8)

and, furthermore,

E0 − E1 = E2 − E3 (4.2 9)

Note that the relation in (4.2-9) is identical in form to that in (4.2-8) if each of
the signals in the latter is replaced by its energy. This observation will carry
over when we consider modulations with memory greater than one.

For Fig. 4-6(b), both surviving paths have a first branch corresponding to
Un = 0 and thus the decision Ûn = 0 is unique provided that

λn (s0) + λn+1 (s2) > λn (s2) + λn+1 (s3) (4.2 10a)

and

λn (s0) + λn+1 (s0) > λn (s2) + λn+1 (s1) (4.2 10b)

or equivalently

λn (s0)− λn (s2) + λn+1 (s2)− λn+1 (s3) > 0 (4.2 11a)

and

λn (s0)− λn (s2) + λn+1 (s0)− λn+1 (s1) > 0 (4.2 11b)

It is clear that the condition in (4.2-7) will also simultaneously satisfy (4.2-11a)
and (4.2-11b).
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Finally, if we assume that we were in state “1” at time n, then it is straight-
forward to show that the conditions on the signal set that produce a unique
decision on Un would be identical to those in (4.2-8) and (4.2-9). Thus, we
conclude that for a memory one modulation of the type described by Fig. 4-1(b)
with unequal energy signals, the conditions on the signal set to guarantee unique
decodability with one symbol delay are those given in (4.2-8) and (4.2-9).

To extend the above to modulations with memory ν greater than one, we
proceed as follows: As was observed in Ref. 3, what we now seek are the inequal-
ity conditions on the sums of branch metrics such that the 2ν surviving paths at
time n+ν merge at a single node at time n+1. Given a particular state at time
n, this set of 2ν conditions then allows for uniquely decoding Un. Since these
conditions are expressed entirely in terms of the branch metrics for the surviving
paths, and, as such, do not depend on the form of the metric itself (i.e., whether
it be (4.2-2) for equal energy signals or (4.2-4) for unequal energy signals), then
it is straightforward to conclude that the finite decoding delay conditions on the
signal set derived in Ref. 3 for the equal energy case also apply now to the signal
energies in the nonequal energy case. Specifically, in addition to (4.1-6), the
signal set must satisfy the energy conditions

E0 − E2m = E2m+1l − E2m+1l+2m , m = 0, 1, 2, · · · , ν − 1, l = 1, 2, · · · , 2ν−m − 1

(4.2 12)

For the equal energy case, (4.2-12) is trivially satisfied.
Having now specified the conditions for achieving finite decoding delay with

unequal energy signals, we now investigate the impact of this relaxed restriction
on the minimum-squared Euclidean distance (power efficiency) of the modu-
lation. Again consider first the memory one case. For the trellis diagram of
Fig. 4-5(a), the unnormalized squared Euclidean distance between the length 2
error event path and the all zeros path (corresponding to Un = 0, Un+1 = 0) is

D2 =
∫ T

0

|s0 (t)− s2 (t)|2 dt+
∫ T

0

|s0 (t)− s1 (t)|2 dt

= 2E0 + E1 + E2 − 2 Re

{∫ T

0

s∗0 (t) (s1 (t) + s2 (t)) dt

}
(4.2 13)

Using (4.2-8) and (4.2-9) in (4.2-13) enables rewriting it in the form
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D2 = 2Eav − 2 Re

{∫ T

0

s∗0 (t) s3 (t) dt

}

Eav =
E0 + E1 + E2 + E3

4
=
E0 + E3

2




(4.2 14)

which when normalized by the average energy of the signal set, Eav, gives

d2
�=
D2

2Eav
= 1−

Re
{∫ T

0
s∗0 (t) s3 (t) dt

}
Eav

= 1−
Re

{∫ T
0
s∗0 (t) s3 (t) dt

}
(E0 + E3) /2

(4.2 15)

Following steps analogous to (4.2-13)–(4.2-15) and using the signal difference
property in (4.2-8), it is straightforward to show that the unnormalized squared
Euclidean distance between any pair of length 2 paths beginning and ending
at the same node (i.e., other pairwise error events) is given by (4.2-15), i.e., the
trellis has a uniform error probability (UEP) property. It can also be shown using
a combination of (4.2-8) and (4.2-9) in (4.2-13) that (4.2-15) can be expressed
as

d2
�=
D2

2Eav
= 1−

Re
{∫ T

0
s∗1 (t) s2 (t) dt

}
(E1 + E2) /2

(4.2 16)

Finally noting that −1 ≤ Re
{∫ T

0
s∗0 (t) s3 (t) dt

}
/ [(E0 + E3) /2] with equal-

ity achieved when s0 (t) = −s3 (t) and, likewise, −1 ≤ Re
{∫ T

0
s∗1 (t) s2 (t) dt

}
/ [(E1 + E2) /2] with equality achieved when s1 (t) = −s2 (t), then, in order to
achieve the maximum value, d2min = 2, we would need to choose s0 (t) = −s3 (t),
which produces E0 = E3 and also s1 (t) = −s2 (t), which produces E1 = E2.
However, from (4.2-9), E0 +E3 = E1 +E2 and, thus, E0 = E1 = E2 = E3 = E,
i.e., all signals have equal energy. Therefore, we conclude that for memory one,
an unequal energy signal set necessarily results in a value of d2min < 2.

For arbitrary memory, ν, by a straightforward extension of the procedure
for memory one, it can be shown that the distance between any pair of length
ν + 1 paths beginning and ending at the same node (i.e., pairwise error events)
is, analogous to (4.2-12), given by

d2
�= 1−

Re
{∫ T

0
s∗0 (t) s2ν+1−1 (t) dt

}
(E0 + E2ν+1−1) /2

(4.2 17)
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Thus, to achieve the maximum value, d2min = 2, we would need to choose s0 (t) =
−s2ν+1−1 (t), which produces E0 = E2ν+1−1. However, in view of the other
forms [analogous to (4.2-16)] that (4.2-17) can be expressed as, it can also be
shown that achieving d2min = 2 also requires choosing si (t) = −s2ν+1−1−i (t) , i =
1, 2, · · · , 2ν − 1, which produces Ei = E2ν+1−1−i, i = 1, 2, · · · , 2ν − 1. Finally,
using the energy conditions in (4.2-12), we arrive at the fact that d2min = 2 can
only be achieved when E0 = E1 = E2 = · · · = E2ν+1−1 = E, i.e., all signals have
equal energy. Thus, we conclude that for arbitrary memory, an unequal energy
signal set necessarily results in a value of d2min < 2.
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